中公建设工程网 2019-11-28 浏览次数:145
为应对2020年注册安全工程师考试,编辑整理了注册安全工程师考试2020年版的最新备考难点,希望给各位考生带来帮助!
相关文章
Ctrl+D收藏本页!
更多注册安全工程师活动(资料,图书,视频统统免费送)及资讯:
关注官方微信“zcaqgc”
加入注册安全工程师交流备考群:620276701
国家安全生产监督管理总局分别于 2009 年、2013 年公布了《首批重点监管的危险化工工艺目录》《首批重点监管的危险化工工艺安全控制要求、重点监控参数及推荐的控制方案》《第二批重点监管危险化工工艺目录》和《第二批重点监管的危险化工工艺重点监控参数、安全控制基本要求及推荐的控制方案》,明确了 18 种重点监管的危险化工工艺及其工艺安全控制措施。
(一)光气及光气化工艺(考点)
1. 工艺简介
光气及光气化工艺包含光气的制备工艺,以及以光气为原料制备光气化产品的工艺路线,光气化工艺主要分为气相和液相两种。
2. 典型工艺
(1)一氧化碳与氯气的反应得到光气。
(2)光气合成双光气、三光气。
(3)采用光气作单体合成聚碳酸酯。
(4)甲苯二异氰酸酯( TDI )的制备。
(5) 4,4’一二苯基甲皖二异氨酸酯( MDI )的制备。
(6)异氰酸酯的制备等。
3. 反应类型(考点)
反应类型:放热反应。
4. 工艺危险特点(考点)
(1)光气为剧毒气体,在储运、使用过程中发生泄漏,易造成大面积污染、中毒事故。
(2)反应介质具有燃爆危险性。
(3)副产物氯化氢具有腐蚀性,易造成设备和管线泄漏使人员发生中毒事故。
5. 重点监控单元
重点监控单元:光气化反应釜、光气储运单元。
6. 重点监控工艺参数
(1)一氧化碳、氯气含水量。
(2)反应釜温度、压力。
(3)反应物质的配料比。
(4)光气进料速度。
(5)冷却系统中冷却介质的温度、压力、流量等。
7. 安全控制的基本要求
(1)事故紧急切断阀。
(2)紧急冷却系统。
(3)反应釜温度、压力报警联锁。
(4)局部排风设施。
(5)有毒气体回收及处理系统。
(6)自动泄压装置。
(7)自动氨或碱液喷淋装置。
(8)光气、氯气、一氧化碳监测及超限报瞥。
(9)双电源供电。
8. 宜采用的控制方式(考点)
光气及光气化生产系统一旦出现异常现象或发生光气及其剧毒产品泄漏事故时,应通过自控联锁装置启动紧急停车并自动切断所有进出生产装置的物料,将反应装置迅速冷却降温,同时将发生事故设备内的剧毒物料导入事故捕内,开启氨水、稀碱液喷淋,启动通风排毒系统,将事故部位的有毒气体排至处理系统。
(二)电解工艺(氯碱)
1. 工艺简介
电流通过电解质榕液或熔融电解质时,在两个极上所引起的化学变化称为电解反应。涉及电解反应的工艺过程为电解工艺。许多基本化学工业产品(氢、氧、氯、烧碱、过氧化氢等)的制备,都是通过电解来实现的。
2. 典型工艺
(1)氯化钠(食盐)水溶液电解生产氯气、氢氧化钠、氢气。
(2)氯化钾水溶液电解生产氯气、氢氧化钾、氢气。
3. 反应类型(考点)
反应类型:吸热反应。
4. 工艺危险特点(考点)
(1)电解食盐水过程中产生的氢气是极易燃烧的气体,氯气是氧化性很强的剧毒气体,两种气体混合极易发生爆炸,当氯气中含氢量达到 5% 以上,则随时可能在光照或受热情况下发生爆炸。
(2)如果盐水中存在的铵盐超标,在适宜的条件(p H <4.5 )下,铵盐和氯作用可生成氧化铵,浓氯化铵溶液与氯还可生成黄色油状的三氯化氮。三氯化氮是一种爆炸性物质,与许多有机物接触或加热至 90 ℃以上以及被撞击、摩擦等,即发生剧烈的分解而爆炸。
(3)电解溶液腐蚀性强。
(4)液氯的生产、储存、包装、输送、运输可能发生液氯的泄漏。
5. 重点监控单元重点监控单元:电解槽、氯气储运单元。
6. 重点监控工艺参数
(1)电解槽内液位。
(2)电解槽内电流和电压。
(3)电解槽进出物料流量。
(4)可燃和有毒气体浓度。
(5)电解槽的温度和压力。
(6)原料中镀含量。
(7)氯气杂质含盘(水、氢气、氧气、三氯化氮等)等。
7. 安全控制的基本要求
(1)电解槽温度、压力、液位、流量报警和联锁。
(2)电解供电整流装置与电解槽供电的报瞥和联锁。
(3)紧急联锁切断装置。
(4)事故状态下氯气吸收中和系统。
(5)可燃和有毒气体检测报警装置等。
8. 宜采用的控制方式(考点)
(1)将电解槽内压力、槽电压等形成联锁关系,系统设立联锁停车系统。
(2)安全设施,包括安全阀、高压阀、紧急排放阀、液位计、单向阀及紧急切断装置等。
(三)氯化工艺(考点)
1. 工艺简介
氯化是化合物的分子中引人氯原子的反应,包含氯化反应的工艺过程为氯化工艺,主要包括取代氯化、加成氯化、氧氯化等。
2. 典型工艺
(1)取代氯化:氯取代烷烃的氢原子制备氯代烷烃;氯取代苯的氢原子生产六氯化苯;氯取代萘的氢原子生产多氯化萘;甲醇与氯反应生产氯化烷;乙醇和氯反应生产氯乙烷(氯乙醛类);醋酸与氯反应生产氯乙酸;氯取代甲苯的氢原子生成苄基氯;次氯酸、次氯酸钠或 N一氯代丁二酰亚胺与铵反应制备 N-氯化物;
氯化亚砜作为氯化剂制备氯化物等。
(2)加成氯化:乙烯与氯加成氯化生产 1, 2一二氯乙烷;乙炔与氯加成氯化生产1, 2一二氯乙烯;乙炔和氯化氢加成生产氯乙烯等。
(3)氧氯化:乙烯氧氯化生产二氯乙烷;丙烯氧氯化生产 1, 2 一二氯丙烷;甲烷氧氯化生产甲烷氯化物;丙烷氧氯化生产丙烷氯化物等。
(4)其他工艺硫与氯反应生成一氯化硫;四氯钛的制备;黄磷与氯气反应生产三氯化磷、五氯化磷等。
3. 反应类型(考点)
反应类型:放热反应。
4. 工艺危险特点(考点)
(1)氯化反应是一个放热过程,尤其在较高温度下进行氯化,反应更为剧烈,速度快,放热量较大。
(2)所用的原料大多具有燃爆危险性。
(3)常用的氯化剂氯气本身为剧毒化学品,氧化性强,储存压力较高,多数氯化工艺采用液氯生产是先汽化再氯化,一旦泄漏危险性较大。
(4)氯气中的杂质,如水、氢气、氧气、三氯化氮等,在使用中易发生危险,特别是三氯化氮积累后,容易引发爆炸危险。
(5)生成的氯化氢气体遇水后腐蚀性强。
(6)氯化反应尾气可能形成爆炸性混合物。
5. 重点监控单元
(1)氯化反应釜。
(2)氯气储运单元。
6. 重点监控工艺参数
(1)氯化反应釜温度和压力。
(2)氯化反应釜搅拌速率。
(3)反应物料的配比。
(4)氯化剂进料流量。
(5)冷却系统中冷却介质的温度、压力、流量等。
(6)氯气杂质含量(水、氢气、氧气、三氯化氮等)。
(7)氯化反应尾气组成等。
8. 宜采用的控制方式(考点)
(1)将氯化反应釜内温度、压力与釜内搅拌、氯化剂流量、氯化反应釜夹套冷却水进水间形成联锁关系,设立紧急停车系统。
(2)安全设施,包括安全阀、高压阀、紧急放空阀、液位计、单向阀及紧急切断装置等。
(四)硝化工艺
1. 工艺简介
硝化是有机化合物分子中引人硝基(-N02 )的反应,最常见的是取代反应。硝化方法可分成直接硝化法、间接硝化法和亚硝化法,分别用于生产硝基化合物、硝胺、硝酸脂和亚硝基化合物等。涉及硝化反应的工艺过程为硝化工艺。2. 典型工艺
(1)直接硝化法:丙三醇与混酸反应制备硝酸甘油;氯苯硝化制备邻硝基氯苯、对硝基氯苯;苯硝化制备硝基苯;;蒽醌硝化制备 1一硝基蒽醌;甲苯硝化生产三硝基甲苯(俗称梯恩梯, TNT );丙烷等烷烃与硝酸通过气相反应制备硝基烷烃;硝酸胍、硝基胍的制备;浓硝酸、亚硝酸钠和甲醇制备亚硝酸甲脂等。
(2)间接硝化法:苯酚采用磺酰基的取代硝化制备苦味酸等。
(3)亚硝化法: 2一荼酚与亚硝酸盐反应制备 1一亚硝基一2荼酚;二苯胺与亚硝酸钠和硫酸水榕液反应制备对亚硝基二苯胺等。
3 . 反应类型(考点)
反应类型:放热反应。4. 工艺危险特点(考点)
(1)反应速度快,放热量大。大多数硝化反应是在非均相中进行的,反应组分的不均匀分布容易引起局部过热导致危险。尤其在硝化反应开始阶段,停止搅拌或由于搅拌叶片脱落等造成搅拌失效是非常危险的,一旦搅拌再次开动,就会突然引发局部激烈反应,瞬间释放大量的热量,引起爆炸事故。
(2)反应物料具有燃爆危险性。
(3)硝化剂具有强腐蚀性、强氧化性,与油脂、有机化合物(尤其是不饱和有机化合物)接触能引起燃烧或爆炸。
(4)硝化产物、副产物具有爆炸危险性。
8. 宜采用的控制方式(考点)
(1)将硝化反应釜内温度与釜内搅拌、硝化剂流量、硝化反应釜夹套冷却水进水阀形成联锁关系,在硝化反应釜处设立紧急停车系统,当硝化反应釜内温度超标或搅拌系统发生故障,能自动报警并自动停止加料。分离系统温度与加热、冷却形成联锁,温度超标时,能停止加热并紧急冷却。
(2)硝化反应系统应设有泄爆管和紧急排放系统。
(五)合成氨工艺
1. 工艺简介
氮和氢两种组分按一定比例( 1 : 3 )组成的气体(合成气),在高温、高压下(一般为 400 ~ 450 ℃, 15 ~ 30 MPa )经催化反应生成氨的工艺过程。
2. 典型工艺
(1)节能 AMV 法。
(2)德士古水煤浆加压气化法。
(3)凯洛格法。
(4)甲醇与合成氨联合生产的联醇法。
(5)纯碱与合成氨联合生产的联碱法。
(6)采用变换催化剂、氧化钵脱硫剂和甲烷催化剂的“三催化”气体净化法等。
3. 反应类型(考点)
反应类型:吸热反应。
4. 工艺危险特点(考点)
(1)高温、高压使可燃气体爆炸极限扩宽,气体物料一旦过氧(亦称透氧),极易在设备和管道内发生爆炸。
(2)高温、高压气体物料从设备管线泄漏时会迅速膨胀与空气混合形成爆炸性混合物,遇到明火或因高流速物料与裂(喷)口处摩擦产生静电火花引起着火和空间爆炸。
(3)气体压缩机等转动设备在高温下运行会使润滑油挥发裂解,在附近管道内造成积炭,可导致积炭燃烧或爆炸。
(4)高温、高压可加速设备金属材料发生蠕变、改变金相组织,还会加剧氢气、氮气对钢材的氢蚀及渗氮,加剧设备的疲劳腐蚀,使其机械强度减弱,引发物理爆炸。
(5)液氨大规模事故性泄漏会形成低温云团引起大范围人群中毒,遇明火还会发生空间爆炸。
8. 宜采用的控制方式(考点)
(1)将合成氨装置内温度、压力与物料流量、冷却系统形成联锁关系。
(2)将压缩机温度、压力、人口分离器液位与供电系统形成联锁关系。
(3)紧急停车系统。
(4)合成单元自动控制还需要设置以下几个控制回路:氨分、冷交液位;废锅液位;循环量控制;废锅蒸汽流量;废锅蒸汽压力。
(5)安全设施,包括安全阀、爆破片、紧急放空间、液位计、单向阀及紧急切断装置等。
(六)裂解(裂化)工艺
1. 工艺简介(考点)
裂解是指石油系的烃类原料在高温条件下,发生碳链断裂或脱氢反应,生成烯烃及其他产物的过程。产品以乙烯、丙烯为主,同时副产丁烯、丁二烯等烯烃和裂解汽油、柴油、燃料油等产品。
烃类原料在裂解炉内进行高温裂解,产出组成为氢气、低/高碳烃类、芳烃类以及馏分为 288 ℃以上的裂解燃料油的裂解气混合物。经过急冷、压缩、激冷、分馏以及干燥和加氢等方法,分离出目标产品和副产品。
在裂解过程中,同时伴随缩合、环化和脱氢等反应。由于所发生的反应很复杂,通常把反应分成两个阶段。第一阶段,原料变成的目的产物为乙烯、丙烯,这种反应称为一次反应。
第二阶段,一次反应生成的乙烯、丙烯继续反应转化为炔烃、芳烃、环烷烃,甚至最终转化为氢气和焦炭,这种反应称为二次反应。裂解产物往往是多种组分混合物。影响裂解的基本因素主要为温度和反应的持续时间。化工生产中用热裂解的方法生产小分子烯烃、:炔烃和芳香烃,如乙烯、丙烯、丁二烯、乙炔、苯和甲苯等。
2. 典型工艺
(1)热裂解制烯烃工艺。
(2)重油催化裂化制汽油、柴油、丙烯、丁烯。
(3)乙苯裂解制苯乙烯。
(4)二氟一氯甲烧( HCFC-22 )热裂解制得四氟乙烯( TFE )。
(5)二氟一氯乙烧( HCFC -142b )热裂解制得偏氟乙烯( VDF )。
(6)四氟乙烯和八氟环丁烷热裂解制得六氟乙烯( HFP )等。
3. 反应类型(考点)
反应类型:高温吸热反应。
4. 工艺危险特点(考点)
(1)在高温(高压)下进行反应,装置内的物料温度一般超过其自燃点,若漏出会立即引起火灾。
(2)炉管内壁结焦会使流体阻力增加,影响传热,当焦层达到一定厚度时,因炉管壁温度过高,而不能继续运行下去,必须进行清焦,否则会烧穿炉管,裂解气外泄,引起裂解炉爆炸。
(3)如果由于断电或引风机机械故障而使引风机突然停转,则炉膛内很快变成正压,会从窥视孔或烧嘴等处向外喷火,严重时会引起炉膛爆炸。
(4)如果燃料系统大幅度波动,燃料气压力过低,则可能造成裂解炉烧嘴回火,使烧嘴烧坏,甚至会引起爆炸。
(5)有些裂解工艺产生的单体会自聚或爆炸,需要向生产的单体中加阻聚剂或稀释剂等。
8. 宜采用的控制方式
(1)将引风机电流与裂解炉进料阀、燃料油进料阀、稀释蒸汽阀之间形成联锁关系,一旦引风机故障停车,则裂解炉自动停止进料并切断燃料供应,但应继续供应稀释蒸汽,以带走炉膛内的余热。
(2)将燃料油压力与燃料油进料阀、裂解炉进料阀之间形成联锁关系,燃料油压力降低,则切断燃料油进料间,同时切断裂解炉进料阀。
(3)分离塔应安装安全阀和放空管,低压系统与高压系统之间应有逆止阀并配备固定的氮气装置、蒸汽灭火装置。
(4)将裂解炉电流与锅炉给水流量、稀释蒸汽流量之间形成联锁关系;一旦水、电、蒸汽等公用工程出现故障,裂解炉能自动紧急停车。
(5)反应压力正常情况下由压缩机转速控制,开工及非正常工况下由压缩机人口放火炬控制。
(七)加氢工艺(考点)
1. 工艺简介
加氢是在有机化合物分子中加人氢原子的反应,涉及加氢反应的工艺过程为加氢工艺,主要包括不饱和键加氢、芳环化合物加氢、含氮化合物加氢、含氧化合物加氢、氢解等。
2. 典型工艺
(1)不饱和炔烃、烯烃的三链和双键加氢:环戊二烯加氢生产环戊烯等。
(2)芳烃加氢:苯加氢生成环己烷;苯酚加氢生产环己醇等。
(3)含氧化合物加氢:一氧化碳加氢生产甲醇;丁酰加氢生产丁醇;辛烯醛加氢生产辛醇等。
(4)含氮化合物加氢:己二腈加氢生产己二胺;硝基苯催化加氢生产苯胺等。
(5)油品加氢:馏分油加氢裂化生产石脑油、柴油和尾油;渣油加氢改质;减压馏分油加氢改质;催化(异构)脱蜡生产低凝柴油、润滑油基础油等。
3. 反应类型(考点)
反应类型:放热反应。
4. 工艺危险特点(考点)
(1)反应物料具有燃爆危险性,氧气的爆炸极限为 4% ~ 75% ,具有高燃爆危险特性。
(2)加氢为强烈的放热反应,氢气在高温高压下与钢材接触,钢材内的碳分 子易与氢气发生反应生成碳氢化合物,使钢制设备强度降低,发生氢脆。
(3)催化剂再生和活化过程中易引发爆炸。
(4)加氢反应尾气中有未完全反应的氢气和其他杂质在排放时易引发着火或爆炸。
5. 重点监控单元
重点监控单元:加氢反应釜、氢气压缩机。
6. 重点监控工艺参数
(1)加氢反应釜或催化剂床层温度、压力。
(2)加氢反应釜内搅拌速率。
(3)氢气流盘。
(4)反应物质的配料比。
(5)系统氧含量。
(6)冷却水流量。
(7)氢气压缩机运行参数、加氢反应尾气组成等。
7. 安全控制的基本要求
(1)温度和压力的报警和联锁。
(2)反应物料的比例控制和联锁系统。
(3)紧急冷却系统。
(4)搅拌的稳定控制系统。
(5)氢气紧急切断系统。
(6)加装安全阀、爆破片等安全设施。
(7)循环氢压缩机停机报警和联锁。
(8)氢气检测报警装置等。
8. 宜采用的控制方式(考点)
(1)将加氢反应釜内温度、压力与釜内搅拌电流、氢气流量、加氢反应釜夹套冷却水进水间形成联锁关系,设立紧急停车系统。
(2)加人急冷氮气或氢气的系统。
(3)当加氢反应釜内温度或压力超标或搅拌系统发生故障时自动停止加氢,泄压,并进入紧急状态。
(4)安全泄放系统
(八)氧化工艺(考点)
1. 工艺简介
氧化为有电子转移的化学反应中失电子的过程,即氧化数升高的过程。多数有机化合物的氧化反应表现为反应原料得到氧或失去氢。涉及氧化反应的工艺过程为氧化工艺。常用的氧化剂有:空气、氧气、双氧水、氯酸钾、高锰酸钾、硝酸盐等。
2. 典型工艺
(1)乙烯氧化制环氧乙烷。
(2)甲醇氧化制备甲醛。
(3)对二甲苯氧化制备对苯二甲酸。
(4)异丙苯经氧化-酸解联产苯酚和丙酮。
(5)环己烷氧化制环己酮。
(6)天然气氧化制乙炔。
3. 反应类型(考点)
反应类型:放热反应。
4. 工艺危险特点(考点)
(1)反应原料及产品具有燃爆危险性。
(2)反应气相组成容易达到爆炸极限,具有闪爆危险。
(3)部分氧化剂具有燃燥危险性,如氯酸钾、高锰酸钾、铬酸酐等都属于氧化剂,如遇高温或受撞击、摩擦以及与有机物、酸类接触,皆能引起火灾爆炸。
(4)产物中易生成过氧化物,化学稳定性差,受高温、摩擦或撞击作用易分解、燃烧或爆炸。
5. 宜采用的控制方式(考点)
(1)将氧化反应釜内温度和压力与反应物的配比和流量、氧化反应釜夹套冷却水进水阀、紧急冷却系统形成联锁关系。
(2)在氧化反应釜处设立紧急停车系统,当氧化反应釜内温度超标或搅拌系统发生故障时自动停止加料并紧急停车。
(3)配备安全阀、爆破片等安全设施。
(九)过氧化工艺
l. 工艺简介
向有机化合物分子中引人过氧基(-0-0一)的反应称为过氧化反应,得到的产物为过氧化物的工艺过程称为过氧化工艺。
2. 典型工艺
(1)双氧水的生产。
(2)乙酸在硫酸存在下与双氧水作用,制备过氧乙酸水溶液。
(3)酸配与双氧水作用直接制备过氧二酸。
(4)苯甲酰氯与双氧水的碱性溶液作用制备过氧化苯甲酰。
(5)异丙苯经空气氧化生产过氧化氢异丙苯。
(6)叔丁醇与双氧水制备叔丁基过氧化氢等。
3. 反应类型(考点)
反应类型:吸热反应或放热反应。
4. 工艺危险特点(考点)
(1)过氧化物都含有过氧基(-0-0一),属含能物质,由于过氧键结合力弱,断裂时所需的能量不大,对热、振动、冲击或摩擦等都极为敏感,极易分解甚至爆炸。
(2)过氧化物与有机物、纤维接触时易发生氧化、产生火灾。
(3)反应气相组成容易达到爆炸极限,具有燃爆危险。
5. 重点监控单元(考点)
重点监控单元:过氧化反应釜。
6. 重点监控工艺参数
(1)过氧化反应釜内温度。
(2) pH 。
(3)过氧化反应釜内搅拌速率。
(4)(过)氧化剂流量。
(5)参加反应物质的配料比。
(6)过氧化物浓度。
(7)气相氧含量等。
7. 安全控制的基本要求
(1)反应釜温度和压力的报警和联锁。
(2)反应物料的比例控制和联锁及紧急切断动力系统。
(3)紧急断料系统。
(4)紧急冷却系统。
(5)紧急送人惰性气体的系统。
(6)气相氧含量-监测、报警和联锁。
(7)紧急停车系统。
(8)安全泄放系统。
(9)可燃和有毒气体检测报警装置等。
8. 宜采用的控制方式(考点)
(1)将过氧化反应釜内温度与釜内搅拌电流、过氧化物流量、过氧化反应釜夹套冷却水进水阀形成联锁关系,设置紧急停车系统。
(2)过氧化反应系统应设置世爆管和安全泄放系统。
(十)磺化工艺
1. 工艺简介
磺化是向有机化合物分子中引人磺酰基(-S03H )的反应。磺化方法分为三氧化硫磺化法、共沸去水磺化法、氯磺酸磺化法、烘培磺化法和亚硫酸盐磺化法等。涉及磺化反应的工艺过程为磺化工艺。磺化反应除了增加产物的水溶性和酸性外,还可以使产品具有表面活性。芳烃经磺化后,其中的磺酸基可进一步被其他基团[如羟基(-0H)、氨基(-NH2 )、腈基(-CN )等]取代,生产多种衍生物。
2. 典型工艺
(1)三氧化硫磺化法:
①气体三氧化硫和十二烷基苯等制备十二烷基苯磺酸钠。
②硝基苯与液态三氧化硫制备间硝基苯磺酸。
③甲苯磺化生产对甲基苯磺酸和对位甲酚。
④对硝基甲苯磺化生产对硝基甲苯邻磺酸等。
(2)共沸去水磺化法:
①苯磺化制备苯磺酸。
②甲苯磺化制备甲基苯磺酸等。
(3)氯磺酸磺化法:
①芳香族化合物与氯磺酸反应制备芳磺酸和芳磺酰氯。
②乙酰苯胺与氯磺酸生产对乙酰氨基苯磺酰氯等。
(4)烘培磺化法:苯胺磺化制备对氨基苯磺酸等。
(5)亚硫酸盐磺化法:
① 2, 4-二硝基氯苯与亚硫酸氢钠制备 2, 4一二硝基苯磺酸钠。
② 1一硝基蒽醌与亚硫酸钠作用得到 α-蒽醌硝酸等。
3. 反应类型(考点)
反应类型:放热反应。
4. 工艺危险特点(考点)
(1)反应原料具有燃爆危险性;磺化剂具有氧化性、强腐蚀性;如果投料顺序颠倒、投料速度过快、搅拌不良 、 冷却效果不佳等,都有可能造成反应温度异常升高,使磺化反应变为燃烧反应,引起火灾或爆炸事故。
(2)氧化硫易冷凝堵管,泄漏后易形成酸雾,危害较大。
5. 重点监控单元
重点监控单元:磺化反应釜。
6 . 重点监控工艺参数
(1)磺化反应釜内温度 。
(2)磺化反应釜内搅拌速率。
(3)磺化剂流量 。
(4)冷却水流量 。
7. 安全控制的基本要求
(1)反应釜温度的报警和联锁。
(2)搅拌的稳定控制和联锁系统 。
(3)紧急冷却系统。
(4)紧急停车系统。
(5)安全泄放系统。
(6)二氧化硫泄漏监控报警系统等。
8. 宜采用的控制方式(考点)
(1)将磺化反应釜内温度与磺化剂流量、磺化反应釜夹套冷却水进水阀、釜内搅拌电流形成联锁关系,紧急断料系统,当磺化反应釜内各参数偏离工艺指标时,能自动报警、停止加料,甚至紧急停车。
(2)磺化反应系统应设有泄爆管和紧急排放系统。
(十一)聚合工艺(考点)
1. 工艺简介
聚合是一种或几种小分子化合物变成大分子化合物(也称高分子化合物或聚合物,通常分子量为 1 × 104 ~ 1 × 107 )的反应,涉及聚合反应的工艺过程为聚合工艺。 聚合工艺的种类很多,按聚合方法可分为本体聚合、悬浮聚合、乳液聚合、溶液聚合等。
2. 典型工艺
(1)聚烯烃生产:
①聚乙烯生产。
②聚丙烯生产。
③聚苯乙烯生产等。
(2)聚氯乙烯生产 。
(3)合成纤维生产:
①涤纶生产。
3. 反应类型(考点)
反应类型:放热反应。
4. 工艺危险特点(考点)
(1)聚合原料具有自聚和燃爆危险性。
(2)如果反应过程中热量不能及时移出,随物料温度上升,发生裂解和暴聚,所产生的热量使裂解和暴聚过程进一步加剧,进而引发反应器爆炸。
(3)部分聚合助剂危险性较大。
8.宜采用的控制方式(考点)
(1)将聚合反应釜内温度、压力与釜内搅拌电流、聚合单体流量、引发剂加入量、聚合反应釜夹套冷却水进水阀形成联锁关系,在聚合反应釜处设立紧急停车系统。
(2)当反应超温、搅拌失效或冷却失效时,能及时加人聚合反应终止剂。
(3)安全泄放系统。
(十二)电石生产工艺(考点)
1. 工艺简介
电石生产工艺是以石灰和碳素材料(焦炭、兰炭、石油焦、冶金焦、白煤等)为原料,在电石炉内依靠电弧热和电阻热在高温进行反应,生成电石的工艺过程。电石炉型式主要分为两种,即内燃型和全密闭型。
2. 典型工艺
石灰和碳素材料(焦炭、兰炭、石油焦、冶金焦、白煤等)反应制备电石。
3. 反应类型
反应类型:吸热反应。
4. 工艺危险特点
(1) 电石炉工艺操作具有火灾、爆炸、烧伤、中毒、触电等危险性。
(2)电石遇水会发生剧烈反应,生成乙炔气体,具有燃爆危险性。
(3)电石的冷却、破碎过程具有人身伤害、烫伤等危险性。
(4)反应产物一氧化碳有毒,与空气混合到 12.5% ~ 74% 时会引起燃烧和爆炸。
(5)生产中漏糊造成电极软断时,会使炉气出口温度突然升高,炉内压力突然增大,造成严重的爆炸事故。
5. 重点监控单元(考点)
重点监控单元:电石炉。
6. 重点监控工艺参数
(1)炉气温度。
(2)炉气压力。
(3)料仓料位。
(4)电极压放量。
(5)一次电流。
(6)一次电压。
(7)电极电流。
(8)电极电压。
(9)有功功率。
(10)冷却水温度、压力。
(11)液压箱油位、温度。
(12)变压器温度。
(13)净化过滤器入口温度、炉气组分分析等。
7.安全控制的基本要求
(1)设置紧急停炉按钮。
(2)电炉运行平台和电极压放视频监控、输送系统视频监控和启停现场声音报警。
(3)原料称重和输送系统控制。
(4)电石炉炉压调节、控制。
(5)电极升降控制。
(6)电极压放控制。
(7)液压泵站控制。
(8)炉气组分在线检测、报警和联锁。
(9)可燃和有毒气体检测和声光报警装置。
(10)设置紧急停车按钮等。
8. 宜采用的控制方式(考点)
(1)将炉气压力、净化总阀与放散阀形成联锁关系。
(2)将炉气组分氢、氧含量高与净化系统形成联锁关系。
(3)将料仓超料位、氢含量与停炉形成联锁关系。
(4)安全设施,包括安全阀、重力泄压阀、紧急放空阀、防爆膜等。
考试热点:
以上就是中公建设工程网小编整理的安全工程师考试备考难点,此外,小编还给大家整理了复习考点、历年试题、模拟试题等考试资料,更多备考资料持续更新中。
报考指南
报考条件查询
考点精粹
要点难点汇总
模拟试题
模拟真实题库
封闭集训班
乐享畅学班
VIP网络班
零基础套餐班
百问百答
解答你的疑难杂症
报考检索
一键查询报考条件
资料下载
各项资料任君挑选